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Effective temperature and compactivity of a lattice gas under gravity
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The notion of longitudinal effective temperature and its relation with the Edwards compactivity are inves-
tigated in an abstract lattice gas model of granular material compacting under gravity and weak thermal
vibration.
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A distinctive feature of mean-field glassy dynamics is achange in the generalized fluctuation-dissipation relation
peculiar violation of fluctuation-dissipation relations which found in Ref.[9], and its effect is substantially negligible at
leads to the definition of a time-scale dependent “effectivehigh packing density.
temperature1,2], and the possibility of constructing a non-  The fluctuation-dissipation properties can be character-
equilibrium thermodynamics of glasses and dense granuldazed by applying a random perturbation to the system at
media[3,4]. Effective temperature also appears in athermatimest=t,,:
systems, where the high packing density regime is attained
by compression or by using a confining potential. A particu-
larly interesting situation, which is relevant to the study of HEZHOJre@(t_tw)Zfl fihi, @)
granular materials, occurs when the confining force is grav-
ity. In this case a nonstationary inhomogeneous density prayhere f;= +1 independently for each particle, is small
file generally arises and the notion of effective temperatur%nough to probe the linear response regime,@rid the Step
may be then not well defined unless suitable conditions ar@unction. The integrated response function is then defined as:
verified. In this Brief Report we explore the possibility of
defining a global effective temperature in an abstract model 1N
of granular material under gravity and weak thermal vibra- XLt =5 > (fidhi(b), 3
tion, and its relation with the Edwards compactivity. =t

The model consists of a gas of particles on a body \yhereAh(t) is the height difference between the perturbed
centred cubidbcg lattice where there can be at most one 5y nperturbed particle at timet. The angular brackets
particle per site. There is no cohesion energy among particlegenote the average over the thermal noise while the overline
and the Hamiltonian is denotes the average over the random force. The “mean-

N square displacement” between two configurations at tigne

Hozmgzl h;, (1) andt>t,, is

N

N
2, ([0 =yt +Rt) -RH1), @

Z| -

whereg is the gravity constant; is the height of the particle B(t,tw)=
i, andm its mass. At each time step a particle can move with
probability p to a neighboring empty site if the particle has
less thanv nearest neighbors before and after it has move
[5]. Here p=min[1x 2], where Ah=+1 is the vertical
displacement in the attempted elementary mg&k and x 1 N

=exp(—mgksT). We setmg/kg=1 and v=5 throughout. h(t)== > (hi(1)). (5)
At high enough packing density, dynamical models of this Ni=1

kind possess an extensive entropy of blocked statefined
as configurations in which any particle is unable to move X e 13
whose derivative is the so-called Edwards compactivity. Foffent vs response function af waiting “"FW:? , It _clearly

this reason such models exhibit a slow compaction dynamic§hOWS that the presence of a SIOV‘.’ Iong|tud|nall drift _dogs not
reminiscent of dense granular mat{&;8]. It was found in prevgnt the eX|§tence of gengral!zed fluctuat|0n—d|ss!pat|on
particular that during compaction a generalized quctuation—reIat'on' In particular, no qualitative change occurs in the
dissipation relationship is obey¢8l], giving a first evidence ~characteristic broken-line pattern when the drift temt,,)

of an effective temperature in this regime. In REJ] the  —h(t) in Eq. (4) is neglected, while appreciable quantitative
drift contribution to the longitudinal mean-square displace-deviations between the two sets of datéth and without the
ment was ignored10], leading to claim that “all measures drift term) only appear when the measurement time is quite
of vertical correlation and response lead to the impossibilityong. Similar results were also found in the so-called FILG
of defining effective temperature” and that “the vertical drift model under gravity12].

due to compaction leads to contradictory resu[tkL]. Here The second result of the numerical compaction experi-
we show that there are no such contradictory results: in thenent is reported in Fig. 2, it shows that the generalized
slow compaction regime the drift brings no qualitative fluctuation-dissipation relation is obeyed at different waiting

here the drift motion is taken into account by the average
eight

Figure 1 reports a parametric plot of mean-square displace-
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FIG. 1. Parametric plot of mean-square displacenBbit,,) vs FIG. 3. Temporal evolution of the density profile during com-

response function P(t,t,)/e, during compaction dynamics Paction dynamicsx=0.2 and timet=21%"¥ for k=1 to 4). Inset:
(circle symbols. The system is prepared in a random loose packedUlk density profile.
state with average densify,;,=0.707, and evolves under gravity L )
and thermal vibration withk=exp(—1/T) =0.2. The perturbation is ZUdd%n Corr?p_re_Sﬁlon n Zerohgra\;rﬁmB]_, and one may WlonR f
turned on at the waiting timg,= 2% and measurements are carried er about t. elr influence on t ee ect!ve temperature. In Ret.
out for timest in the rangdt,,,t,,+10°]. The slope of the dashed [8] the stationary density profile Was. I.merprete.d as formed
line is 0.23[to be compared with 0.20 obtained by neglecting thePY two parts: a lower flat part at critical densipy=0.84,
drift term (X symbolg]. The solid line with slope one is the equi- and an upper _eqwllbrlum part in which kinetic C(_)nstralnts
librium fluctuation-dissipation theorem, which is recovered by re-Play no role. Figure 3 shows the temporal evolution of the
moving kinetic constraintéstar symbols density profile corresponding to the above compaction ex-
periment: one observes that the upper part of the bulk density
times. From the parametric plot of(t,t,) vs B(t,t,) one profile increases faster than the lower de®en when the

can define a time-scale dependent effective temperature tﬁ”‘?er become d_enser than th_e Ia)t,t@rnd_that the bulk_pro-
means of the relation e is far from being flat(see, inset of Fig. 3 At late time

the contribution of the top free interface is small for weak

€ B(t,t,) vibration, and—if sizeable—it would make higher the slope
Tayr(t,ty) = 3 NIESE (6) T/Tdyr_], of the fluctuation_-dissipation_ pld_i.e., small_er the
W effective temperatuye While the contribution of particles at

providedT gy, is constant on that time scale, and where nowthe bottom is negllg|ble as they_ do not .evollve at a[l. .
That the generalized fluctuation-dissipation relation is not

it is understood a possible dependencd gf, on the densit A : i .
profile. Indeed, dlE)ring comprfction the (qsgéstem developg ing:lf“fectedqualltatlvely by an inhomogeneous density profile

- . : can be understood in terms of the mean-field dynamical
homogeneous density profilga g, as it also happens after a model introduced in Ref[13], and further generalized to

0.6 . . . . . nonzero gravity in Ref[8]. In both cases the long-time re-
laxation of the local density factorizesp.—p(z,t)
=f(z2)g(t). Since the mean-square displacement can be
written asB(z,t,t,,) =F(2)G(t,t,) on long enough time in-
terval t—t,,, the violation factor entails two independent
contributions: a purely geometric factor and a purely dy-
namic one. The latter contribution is only responsible for the
intrinsic violation of the fluctuation-dissipation relation. The
02 ¢ ‘é}sf{ t, =27 = |7 notion of effective temperature, therefore, seems to be still
LA too® reliable provided a geometric factor is taken into accaimt
A "= e this specific case the global geometric factor entering(&q.
tw=2 . would be F= [f(z)d zZf[F(z)d z). Notice that for a purely
0 0'5 1 1'5 2 o5 flat density profile there is no difference between “horizon-
’ ' ' tal” and “vertical” observables(and F=1).
B(t,t.) _ The que_stion that naturally arisgs is Wheth_er the longitu-
dinal effective temperature can be interpreted in terms of the
FIG. 2. Nonequilibrium fluctuation-dissipation relation in a Edwards measure, which should now be obtaibgdixing
compaction experiment as in Fig. 1, at different waiting timgs  the density profile of the experimental situation one wishes to
The slope of the straight lines is 0.18, 0.20, 0.23, and 0.27, foreproduce[14]. The numerical implementation of this strat-
increasing waiting time. egy is, however, not straightforward. A more pragmatic ap-
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requires here some care; if one assumes a flat profile, it is not
clear why blocked configurations should depend upon grav-
ity, like in the definition adopted in Ref11]. We have there-
fore, explicitly checked that there is no dependence upon
gravity for the bcc lattice. This is not however the most
general case: interestingly, we found that for the simple cubic
lattice, the anisotropy due to gravifigay along the direction
001), suppresses the first order character of the phase transi-
tion present in the Edwards measure at density betdw7,

[17]. We have then estimatebky,(p) from the relation

0.73 0.74 0.75 0.76

dsEdw_ ds
p TEdWW—T@, (7)

FIG. 4. Comparison between effective temperaturkgy, is
measured during the compaction experiment from the fluctuationwheres(p) = —p In p—(1—p)In(1—p) is the equilibrium en-
dissipation relation at time,,. Tgq, is approximated through the tropy [18]. The two effective temperature$gy,, and Tayn:
Edwards measure with a homogeneous densisyich that the av-  gre shown in Fig. 4 at several densities corresponding to the
erage bulk density profile at timtg, of the compaction experiment  ayerage bulk density profiles of the compaction experiment.
is patw) =p. It is clear that a ponderable comparison is possible only

. ) when other features of the density profileg., the average

proach consists in fixing a few feature of the prof#s sug-  gjopg are fixed, but much work is needed to test this point.
gested in this case by the expressionf such as average |, conclusion, we confirm the existence of a generalized
density, average slope and so on. This is similar in spirit tGy,ctyation-dissipation relation in an abstract model of dense
the construction of restricted Edwards measure which hagranylar matter which exhibits nonstationary inhomogeneous
been recently exploited in Reffl5,16, and generally im-  gensity profiles. The occurrence of a longitudinal effective
proves the comparison with numerical experiments. temperature in the slow compaction regime has been justified

As a preliminary attempt to relate the effective temperayy 5 mean-field dynamical model and its relation with the

ture Tqyn, 0 the inverse compactivity gy, We have com-  Eqwards compactivity has been discussed.
puted the Edwards entrop¢q.(p) to the lowest approxima-

tion, i.e., just by fixing a homogeneous density. In passing, J.J. Arenzon, A. Barrat, and S. Franz are acknowledged
the definition of blocked configuration in presence of gravityfor discussions and comments.
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